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ABSTRACT

Systems of par t ia l  d i f f e r e n t i a l  equations governing the

motion of one-dimensional bodies subject to internal friction

are treated . The implicit function theorem is used to

linearize the equations about an equilibrium solution , and

criteria are developed for the stability of the equilibrium

solution .
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EXPL~ANATION

This paper treats the general equations of rod theory ; it does not

deal with any specific application. The assumption of internal friction

is introduced both as a better approximation to reality and to obtain

tractable (parabolic rather than hyperbolic) differential equations .

Under this assumption , we show that the desirable theorems for the non-

linear equations : existence , uniqueness, and stability , follow from the
analogous theorems for the linearized equations .
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DYN Mfl C STAfl1LITY OF’ ONE—D 1NI ;NSI O NAI ,  N O N L i N E A l ~LY VISCOELASTIC 1301)IES

R usse l)  C. Browne

1.0.  I n t r o d u c t io n .

In t h i s  paper we consider  the problems of ex istence , un i queness ,  and

s t a b i l i t y  for  the q un s i l i ne a r  p a r t i a l  d i f f e r e n t i a l  equa t ions  gove rn ing

the mot ion  of n o n l i ne a r l y v i s c o c las t i c  one d imens iona l  bodies . These

equa t ions  have the  form

( 1.1)  A ( u , s)  ‘t
~t~ 

+ ~~~~~~~~~~ 
— 

~~~
— r n ( u 5 , u , u~~~

, u~~,
s)

+ 
~~

(
~~5 i u , u 5~~,

u t , s)  f ( u 5 , u , u~~, s , t )

for s1 < s < and t > 0

In equ a t i o n  ( 1 . 1 ) ,  u is a f u n c t i o n  of s and t w i t h  va lues  in ]RN ,

a , in , n , and f a re f u rt c t i on s  of the  i n d i ca t e d  ar g um en t s  w i t h  v a l u e s  in
N 0 N Nand A is a f u n ct i o n  w it h  v a l u e s  ~n L ( I ~. ; R ) , the space of

1 in~~ i t r a n s  f 0 i t i u t  ne

Dou n i :~ry co n d i l  j o in . ; f o r  CqU ~i t iOI )  (1 . 1 )  may be s ta ted pa r a m e t r i c a l ly as

( 1 . 2 )  u(s ,t) = q 0 (v 0 , t ) ,  a = 1.2

(1.3) r ( u  , I1 , ; , u , c ) _ L L~ (v , t )  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 1, 2 .

In c~j n  ;t in n  ( 3  . 2 )  , v - v 1 v2 is an u n k n o w n  f u n ct i o n  of t with values
N N

in ~ ~ 
~~~
, w hor e  U < N 1, N 2 ~ N.  Jn  eq u a t i o n  ( 1 . 3 ) ,  ~ = 

~l ~2

is a given funet -ion of t h e ind i c -it ed  a rgumen t s  wit .h values  in ~~N ~

F r e q u e n t l y ,  0 ( .
~ 

= 1,2), so that equatio~i (1.2) specifies u(s(lt)

co mp 1 ct e ]~ w h i l e  c q u a t i n n  ( 1 . 3 )  is vacuour , or N = N so tha t  e q u a t i o n

(1.3) specific:; the value  on in at (o , t )  completely while equation (1.2)—

0~~I~I~~~

:tISI O
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is vacuous . Intermediate values of Na may arise when , for example , the

end of the body is constrained to move along a curve or surface in three-
aq

dimensional space . We assume that rank = N
~~
.

Initial condition s for u are

(1.4) u (s,0) = u
0
(s), ut (s,O) = u1 (s).

Equations (1.1) to (1.4) are derived in BROWN E (1976); the correspond-

ing stationary equations , (1.10) to (1.12) , below , are derived in ANTMAN

(1972 , l976a). The existence and regularity of solutions to the stationary

equations is treated in ANTMAN (197Gb) . A special case of the problem

considered here is treated in BROWNE (1977).

We assume the following conditions on the given functions :

(1.5) The function s A , a, rn, n, f, and p are defined for

in an open subset of U R
N]4 x 1s 1 1 s2] x

and for each value of these arguments;

3m 
N N(1.6) 

~~~ 
(u
~
,u ,u t,u~~

,s) e L ( J R  ; JR ) is a positive definite
—S

and symmetric  t r ans fo rma t ion  on
3m 

N N(1.7) 
~~
— (u~~,u ,u ~~~~~~~ 

e L ( I R  ; JR ) is a positive definite (hut
-St

not necessarily symmetric) transformation on

( 1.8) A ( u t , s) e L ( P N ; JRN) is a positive definite symmetric

t r a n s f o r m a t i o n  on

(1.9) the functions A and a are related by

a(u ,w ,s) = w A(u ,s)~ w

In this paper we construct solutions to equations (1.1) to (1.4) in

the neighborhood of a solution ~~~~~ of the station ary problem

—2—
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——- -—~~~~ - — --~~~~~-- —-—~~~---- —~~~~——~~~~ -~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~
-.

( 1 . 1 0 )  _
~~~~ ri(u* ,u* ,O ,~~,s)  + rn ( u * , u* , O , O , s ) = f * ( u * , U* , s)

(1.11) ~*(sa
) = (v~~)

3q *
(1.12) ~~~~~~~~~~~~~~~~~~~ (v) = p* (u * ,u*).~~~~ 

~~~3v
—ci — a

Our  ma i n  tool is the  i t. ;p ’ i c i t  f u n c t i o n  theorem . In this section we g i v e  a n

exp lanation of our n o t a t i o n  and the d e f i n i t i o n s  of the Banach spaces

cmp 1~~~cd . In  ~;cct io; 2 or g i v e  c r i t e r i a  fo r  the c o n t i n u i t y  and F réche t

d ii  oi nt i th; ii ty of unc~ i o :; on t h e s e  Banach spaces.  In Section 3 we

s t i n l y t h r  1 U I L ; r i z e d  ‘‘orcion ~~ o i ; ; ;t i o ’~ s ( 1 . 1)  to ( 1 . 4 ) ,  obta i n i n g  a n

& s t  i m a t ~~ on I In .  ~ :.o l  1 ons n.; t . In Sect ion 4 we combi no

the r e sul  t ; of ~
;t ’t ions 7 arid t c obt  a i i i  s o lu t  i o n e  to the full nonlinear

}) r o h l c ; ; . I-~I ; i ; ;  th ~ ~ ~~‘ ; a i l t  -;~~~~~~y n.- l t ; i r i  ;xistenco and stability in

a s n i q i c -  St  ,i n_ i i~~~ t i1. fl I 1 :n.i;i ’ ~~~~~n. ost  i t o  u s t as &)t a i ne d

for the l i r o - ir  c i u a t i n n .  ;, . i i i ;  t : ~~~i~~~u t-l ; s ; from a similar argument.

~~~~ ‘ c i i ]  t h e  ~~t ; 1 c ) : L ; i , ’ ~~i ; v t  i ’ - ’ il there exist real valued

f unet. one , , 
~~ 

;;u- t ha

r n ( ; i , t ; , O , O , : ; ) V

~~~~i; ~~~~~~~~~~~
(1 .13)

3
= ~0

(u , u , s)

32
= 0

~J U
(1.1 ~)

3 32 2
f * (n u S) - - - 

:-~ ~1 ;~~~~~, i ; )  
~iic~ç ~1 5 1 u,s)’u +

(1. 15) ;
~v~ 

(
~~‘)  - 

~~~~ ~~~~ 

- 

~
‘ i s’~~’~~ci~ 

. :~~~ C v )

whenovor (1.11) holds. Ii }iy i n.th njs (1.13) holds the material may be

called hy i cic l a stic.

—1—
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Hypotheses (1 .14 )  and (1.15) are adop ted  to make equa t ion  ( 5 . 1 ) ,

below , hold.  To i l l u s t r a t e  that  such r e l a t i o n s  a r i se  in p rac t i ce , we

consider a rod w i t h  ends f ixed  and subject to a unit (force per deformed

length ) pressure from above . If we take u = (x,y) e JR
2 and locate the

center of the cross section at s at x(s)i + y (s)j, we may take

= y5i 
— x5j. The loading is conservative , the potential energy

of a deformed configuration being given by the signed area between that

configuration and the r e fe rence  ( s t r a igh t )  c o n f i g u r a t i o n .  Thus we take

= ~ (x~ y — xy 5) . Then hypothesis (1.14) is va l id  w h i l e  w i t h  our

boundary  cond i t ions  hypothes i s  (1 .15)  reduces to the i d e n t i t y  0 = 0.

In Section 5 we consider conservat ive  problems. We show t h a t  the

elgenfunct ion  cr i ter ion developed in the previous sections may be replaced

by the second var ia t ion  test for  s t a b i l i t y .  If the second va r ia t ion  of

the energy

S
2 2

(1.16) E(u,v) = J r~,0(u) + rP1 Lu)ds +

s1

at u = is positive definite then is s t able  in the topology of

Although the second variation test has been widely used f o r  over

a hundred years , its mathematical validity is often cruestionab le , even

in one dimensiona l problems (KNOPS & WiLKES , 1973; KNOPS , 1977) . lf U —
is small in the C1 topology then tue second variation estimates

E(u,v) - E(u*,v*) in terms of the norm of u - u~ in the 
~~ 

topology.

A straight forward stability argument is thwarted by these distinct

topologies. But we shall show that if the second variation is positive

definite then all derivatives of u occurring in the equation remain close

to those of

1.17. Notation.

We represe nt elements a , b , of IRN by lower case , bold face sans—

serif Latin letters. We denote the usual inner product of a and b on

4—
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by a b  and we set ~aj = ~~~~~~~~~~~ If A is a linear transformation

of JRN , i.e. A e r ( ] R N ; JRN) then its value at a is denoted A -a

and the value of the quadratic form on A at a by a~ A -a. If g is

a d i f f e r e n t i a b l e  f u n c t i o n  on a dom ain in ~~ then its derivative at a,

N 3g
which is an element of L ( J R T

~ ; JR ) ,  is denoted by -~-- (a ) . Thus

denotes the d i f f e r e n t i a l  of q at a in  the d i rec t ion  of b. On the- —
other h a n d , c- .

~-- (a) denotes the element of !,ORn 7 ]R) whose value at

b is c.(~~~(a).b) . We use a similar n o t a t i o n  for  der ivat ives  of o ther

kinds of f u n c t i ons.  We use the same no ta t ion  for  elements of

I f  ( s , t )  -
~ u ( s , t )  is a f u n c t i o n  d e f i n e d  on [s 1, s I x JR+ we denote

2

~~
-
~~

- by U e and we denote ~~~~~ by u
~~
. We denote the function s -

~ u ( s , t )

by u ( ’ , t ) .  I f  (u , v ,w , s , t )  -* g ( u , v ,w , s , t )  is a f u n c t i o n  def ined  on
N 3  + - - . -( JR  ) x (s 1, s2 ] x JR and the composition g ( u 1 u5~ u~~, s , t)  is of i n t e r e s t ,

we denote  t h i s  f un c t i o n  by (s , t )  ~ g l u l  (s , t ) .  We use the same no t a t i on

for  other type s of composi t ions .

1.18. Absti-act Spaces.

Let I C IR , 0 < T < and 0T 
= ~ X I0 , T ] ,  or I x JR4 if T =

and let 0 < ci < 1 .  Then Cci ( I ; J R hl ) is the Banach space of R~ valued

f u n c t i o ns  on I - with finite norm

lu (s 1) —

( 1 .19)  l U l ~ = sup I u ( s ) l  + sup - -

- sd - s . , t , C I  Is — S
i i  1 2

1

and C 2 (QT;lP
n ) is the Banach space of ]R~ valued functions on

with finite norm

~u ( s  ,t.) — u (s ,t H
(1.20) 10 1 

~ 
= sup l u ( s , tH  + sup 1 1 - 2 2 

cxa,~ (s ,t)EQT (sj,tj)CQ T 1 ci +S
1 

S
2 1 1 t1 

— t21

—5—
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We define C
2
~~~(I;]R~ ) to be the Banach space of all 1R1~ valued func-

tions on I, twice differentiable in  s , with finite norm

(1.21) IU ! 2+(n ‘~~ ci + u5 1 4- I u ~ 5 i

24-ti l+—cz2 n nan d we d e f i ne C (Q T ;IR ) to be the Banach space of JR valued

f u n c t i o n s  on 
~T wi th f i n i t e  norm

( 1 . 2 2 )  t u l 1 
= 

~~~~ 1 + 
~~~ 1 + 

~‘ss~ 1 + 
~t 1 12 +ci , l+~ - cx a , -~-a ci ,~ -a  a , -~- o

1 1
, --a 2 +ci , l+--cx

- a 2  2For any real o we define C0 and C0 to be the spaces

of func t ions  on wi th  f i n i t e  norm

( 1 .23)  u I  1 
= l v i 1 ‘ u i l v i

- a ,~~ci , o a ,~~-ct 2 -4- ct , l+ 2-n. , o 2+a , 1+~~i
cx , —cx

where ,
~
, = 0

0t
0 We define tue spaces ~

a
, x 2 , etc . to be the closure— — 1c1,~ cx

of the C functions in the respective spaces C~~, C , etc.

Let D denote an open set in either JRm ~ I or JRm x 0T according

to the con t ex t .  We define A
ci
(D;R fl ) to be the space of JR” valued

func t i ons  cj on D such t h a t  there  ex i s t s  a cons tan t  K and f u n c t i o n

JR+ .~ JR+ sech t h a t  fo r  a l l  ( u . , s . )  ~ D

( 1 . 2 4 )  l~~(u 1, s1) I < K

( 1 . 2 5 )  I g ( u 1, s1) — g ( u 2 , s 2 ) i  < K~ u1 
— 

~2 ’ + w( ls i 
— s2 i

ci)

( 1 . 2 6 )  u rn 4- 
~~~~~~~~~~ = 0

h--0

We define A 2 (D ,JR~ ) to be the space of JR”1 valued functions g on P

such that there exists a constant K and function w : JR+ such

that for all (u.,s.,t.) £ D
—i i 1

—6—
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(1.27) i~~(u11 s11 t1)I < K

(1.28) 12 (u11s1,t1) 
- ~(u2, s2,t 2 )~ < X 1u1 - ~2 ’ 

+ e ( l s 1 - s~~J~ + I t 1 - t 2 I ~~
)

1a,— ~and equation (1.26) holds. We topologize Aa and A with the norms

~g(u 1,s1) — 
g ( u 2 , s2 ) i

(1.29) l’JI a = s u pj g (u , s)l + sup - - - -
A D - 

~ — + i s 1 — s2 i

g ( u  , s ,t
1
) — 

~ (u ,s ,t
(1.30) !~~I 1 = sup g (u , s ,t) + sup

- a,—a D - - D
A 2 I u 1 u 2 i + I s 1~~~ s2 1~~~+ it 1 — t 2 1

I c t  a ag 
~We define A ‘ to be the subset of A such that -~~

-
~~

- ~ A , with the

1
2+ct l , di ,r

obvious norm. We defi ne the spaces A , A , etc. analogously.

a,~ a l,a,~.ct
Finally we define A0 , A0 , etc. to be the subsets of the respec-

a,~ cz 1,a,~-cx
tive spaces A , A , etc. such that the map (s,t )  ‘-~ g(0 ,s,t)

2+cx,1+~-ais in the space C or C as appropriate , wi th  the obvious

norm.

- _ 
_ —7—
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2.0. Calculus in x 2

In this section we give criteria for the continuity and Fr~ chet

diffferentiability of functions defined on X and X . Analogous

results hold for the other X-spaccrs.

1

~~~~~~
- . Proposition . Let u e C 2 (QT;]R

”
~
). Then a necessary and s u f f i c i e n t

cx , —a
condi t ion that  u e X 

~°T~~~
”1
~ 

is that there exist a function ~ :

such that for (s., t.) e

(2.2) lu(s 1,t1
) - u ( s 2 , t 2 ) I < w ( 1 s 1 

— s2 f
ci 

+ (t 1 
- t2i

2)

(2.3) u rn4- ~~~~~~~~~~ = 0
h -~0

Proof. First suppose that u is given and that a function c~ satisfy-

ing conditions (2.2) and (2.3) exists. Extend u to all of JR2 with

the same modulus of c o n t i n u i t y . Let 0 : JR 2 
* ]R4- by a C f u n c t i o n

wi th  support in {(s , t )  e JR
2 i s i  + I t J 2 

< 1), and such tha t

f f  0(s,t)dsdt = 1

JR 2

For C > 0, lc~-

u
~~

(s , t )  = 

~~2 
E 3Ø(~

_
~~± 

t T
)u(A T )dAd T

= f J  E 3
0(~- ,--~ -)u (s — )- ,t — i ) d A d ~

JR 2 C

Then E C and

— 

~~ 1 suplu(s ,t )  — u (s ,t )j
cç~-a 0T 

-

+ ~~~ 
iu (s 1 ,t

1) — 
*~~

(s1 ,t1) u(s2,t2) + u ( s 2,t2) I

— s2 I + It 1 
— t2 I

< o ( c )  -* 2 sup ~~-~ -~~~~--

h’ c

—8—



~
‘ - . ~

a ,~ - c i
Thus u E X  . 1- cx ,-~~cx nTo prove the converse, supp~~.e that u E C 

~~~~~ 
), let

Ii I ciu ( s 1, t 1, u(s 2 ,t 2
)

• (2.4) 0(h) = sup ( 
- - —--—

~~ ls
~ 

— s
2 i
~~ + It 1 

— t2~ < h

~ Is 1
_ s

2 l~~+ 
~~~~~~~~

and suppose that

lim sup ~~1~- = K > 0

h-’04-

Let v e C
~~

(Q
T

;1R ”1) and suppose that v has Lipschitz cons tan t L . Then

I (u—v ) (s ,t )— (u—v) (s ~t ) I
l~~- y l 1~~~lim sup su~~~ 

— - 1 - — ; 2 
+ 1t 1—t 2 l

Is 1—s2 1 + Jt 1—t 2 I

h (i_l)
> lirn sup - F~

- - _ L h  = K > 0

h-”

1a ,~~ cx
Thus u 9’ X . 0

-

2.5. Proposition . Let K be a closed bounded subset of X

Then a necessary condition that K be compact is that th ere ex i s t  a

function w 1R~ 
.
~ such that for all U K and ( s . , t . )  c

(2.5) lu(s 1,t1
) - u(s2,t2)j < s (1s

1 
- s

2 1~~ + It 1 
-

(2.6) 1im~ ~~~~ = 0
h-*0 h

If T < then the condi t ion  is also s u f f i c i e n t .

Proof. To prove that the condition is necessary , let

w(h) sup e (h)
u~ K -

where is the function e defined by equation (2.4), and suppose that

—9—
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-,

• e(h)
lim sup -—s--— = K > 0

Choose a sequence u e A’ such that e (~-) > ~~~. Now for each (s., t.) €

( 2 . 7 )  
n~~ m

1 > Qnm (5is ti
) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ls 1—s2 1 + It 1— t~2 i

By Proposit ion 2.1 , f or fixed in there ex i s t s  a 6 > 0 such that

1 xsup ia (h) <
h<6 ~m

Then for  ~~- < 6, lu — u ~~~. Th us t h e  seq u ence u has no Cauch- ;
fl -n -in 1 4a

subsequence , so K is not compact. .

Now suppose T < = and that a function w satisfying conditions (2.5)

and (2.6) exists . Let u~ be a sequence in  A’ . Then by the  Ascol i

theorem there exists a uniformly Cauchy subsequence , also denoted by un .1 —

a
We will show that u is Cauchy in X , thereby showing t h a t  ,: is

compa ct .  Let e > 0 and choose 6, 0 c 6 < 2, so that

~ (h) c
SUjD —

~
n—- <

h<6

and choose n and in so large that

l u (s,t )  — u
(2.9) sup -n -m 

•~

Then for (s.,t.) 
~ ~T’ 

if is 1 
— s2 j~ + It 1 

— t2 I
2 

< ~ we ha ve

o (s ,t.) 
l9n (sl l t1

)_
~ n

s2~
t2H 

+ ~~~~~~~~~~~~~~~~~~~~~~nm 1 1 

ls 1~s2 i
ci + It 1-t2 i~ 15 1

_5
2 1

n 
+ 1t 1-t2 I

2 
2

If Js 1-s2 1~ + It 1-t2 1
2 

> 6 we have

—10—



- ---- -~
._--~~~~~ ~~~~~-_--~~~~~~~~~~~~~ - -~~~~--~~~~- -

Qnm~~it ti
) < 

n i t ti
)lim

(S
i st iH + 

n 2 5 t
2~~~ n~~ 2t t2H 

<

Thus in either case , Qnm (S jst i
) < ~~

.. Then it follows from (2.8) and the

choice of 6 that hi - 

~m ’ 1 
< C .  Thus the sequence u is Cauchy . 0

a
Let D be an open set in Rm ~ 

~T’ 
and le t E 2 

( D ; I ~(
’
~~)  be the set

of all u E X (QT;P m) such tha t for all (s,t) e QT
(u (s ,t),s ,t) e V .

in
Clearly E (~~ JRm) is open in X (Q m~~~ 

)
~1 1a,~~a a, —a

2.9. Proposition. Let g e A (D ;R  ) .  Then for u e K £ ( D ; ] R in ) ,
-

g lu ) e x (Q T;]R
’1). The map (g,u) -

~ g [ u )  is con tinuous on
a,—a a s — a

A 2 ( D 1~~) )c E 2 (D; lR in
). -

Proof. Let K and w be the Lipschitz constan t and modulus of
1cx ,— a

continuity for in equation (1.28). Let U e E ( D ; J R m) and let

be the modulus of continuity for u given by Proposition 2.1. Clearly ,

~ tu ) is con tinuous. For (s.,t1) ~ ~T 
we have

I9(~) (s15 t1)-~~(uJ 
(s 25 t2) I < K i u ( s 15 t 1

) -U ( S 2 5 t 2 ) I + wg iS l
_ S

2 I
ci +

(xw
~
+o
~
) (I sj_:2 1

ct 
+ It 1-;2 1

2)

= w
~ (u)

(Is l s2 I + It 1 t2 I

Wgiui th)
Clearly , u r n  - - — = 0, so g (u] X by Proposition 2.1.

•
h - -

a —  a
Now let u ~ u0 in ~ 2 (D ;R in); we shall show that glu I -e- g (u0)1 -~~ - - - ~~~ - -

in X . Since the range of a convergent sequence is precompact , by

Proposition 2.5 there exis ts a function w satisfying conditions (2.5)

_ _ _ _ _ _  --------- .-~ -.--- .---~~~~~~~ -- ~~~~~~~
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and (2.6) for all u,~. Then

(2.10) u r n  sup I (g(u 01 — g[u~ ))(s .~t) I < u r n  sup K i (u 0 
— u~ )(s~ t )l = 0

fl+ - - - - n-’~ 0T 
- -

Given c > 0 choose 6 > 0 so that

~ (h ) csup 
~~~~~

— < 
~~

-

and choose n so large that (2.8) holds with in = 0. Then, repeating the

estimate on Q~0(s..t~ ) in the proof of Proposition 2.5, for large n

we have

l (g Iu 0I — glu])(s 15t 1) — 
(g(u 0] — 

glu ]) (s2,t2) I
(2.11) sup - - <

Is 1 
— 52 1 + — t2 1

2

1

By (2.10) and (2.11), g [u I -
~ g (u 01 in x . Thus the map u -* g[u] is

a ,~~a 
- -n - — - - -

continuous on 6’
1 -a s — a

Now let f c A 2 
(6’ JRn ) We have

Jf [u] — g (u)I 
~ 

< supl (f—g ) (~ ) (s,t) I- a,~ -a 
~T

I i ~~~~~~~~~~ Lu] (s1,t1
) - (~~~

-
~~~

) [
~~~~1 (s2 , t2)+ sup ~~~~~~~~

- — .

Q
- T lu(s 15 t1) 

— u(s25 t2) I + 1s 1~s2 1
ci 

+ It 1—t2 1

I u(s1,t1) - 
u (s2 , t2) I + H ~ 1

a 
+ It 1—t 2 I

2

+ It 1-t2 I
2

< I~ —~ ~, (lu l 
~ 

+ fl . -
a , -~- c x  a , -~-a

A

cx
Thus the maps g -

~ gtuj are equicontinuous on A for u in bou nded

subsets of K . Combining our results we have the required continuity

of the map (g,u) -‘ glu ) . 0

-12-
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2.21. Proposition . The map (g,u) -
~~ g [u) is continuousl y Freche t-- 1 11,a,—cx a — c i

differentiable In u on A 2 (D R ~ ) x 6’ 
2 (Ø ;]~Th ) . The Fr~ chet

deriv at iv e is given by

cx4 a  in(2.13) -~— (g!u))w = ( -
~~~~~ [ U ]) . ~,~ for  w € X 

~
0T’~~

1 1 1

Proof. Let g c A and U e 6’ . Since 6’ is open ,

there exists C > 0 such that if Iw I 
~. 

< c then u + w e K . For such

w we have

1 ~q
g(u + wI - glu ) - Fu Iw I ~~~~~ (u + Aw l — -

~~- - [u))w dAs o(w)

ag o (w )
and Proposition 2.9 applied to --

~~
- shows that lim ‘ 0 . Thus

lv i *o ’! 1
- 1 cx , a2

equation (2.13) is correct. By Proposition 2.9, the der ivative def ined by

equation (2.13) is continuous . U

2.14. Proposition . Suppose for each (s ,t) e 0T’ ( O , s , t )  ~ D , and the

set {~ lRi’1~ (u,s,t) e /)) is starshaped with 
~~ !pec t to U = 0. Let

-

2 (p ;JR m ) be the set of all u e x 2 (Q ;JRm) such that (u(s,t) ,s,t) ~ D

for all (s,t) Q~~. Then for all 0 > 0 the map (g, u) g lu l is

- l , cz ,~~-a  a ,~~~a mcontinuousl~~ Frechet_differentiable_from A (~~;J R fl ) x K0 ( D ; R
1

into X
0 (Q

T
;JRn). The Frechet derivative is given by equation (2.13).

ci ,~~-a
Proof . The space X is isomorphic to X upon multiplication 

a ,— c x
by e ; see equation (1.23). Let g E A

0 and let

f(u,s,t )  e0tg(c Ot
u,s,t). If u e and if v(s,t) = e0tu(s,t)

then we have f(v](s,t )  = e0tg (uJ (s ,t). Th us we apply Proposi~~ on 2.12 of f.

— 1 3—



Since V is starshaped with respect l-o the Q
T
_ a xis and since the

1

map t -~ e
_0t 

e X~ (JR 4-; E), we have

1 af
1 f u 1,s1

,t
1

) — f ( u 25 s29 t2)I = -~-~~ (A u
1
,s1

,t
1
) — ---

~~ (xu 2,s2,t2)dx~

t
~~~~~~

e 1

~
15 5 h 1 t

1: 
(Ac 2u 5 t )

(2.15) + ~e 
1g (O ,s1,t 1) 

— e 2g(O ,s2 .t 2 ) I

~ x I ~ 1 - 

~2 ’ + w( Js l 
- s2 i~ + It 1 

- t2 I
2)

for some constant K and function u satisf ying (1.26) . Thus I e A

Also

(u 1,s11t 1) 
— 

~~~~~ 
(u ~~~s2 , t~~) J

3g —ot1 ag —ci t 2(2.16) = (e u 11 s1,t1
) — -

~~
- (e u 2 ,s25 t 2 )

< KIu 1 
- + 0 (151

’

- a 
+ It 1 

- t
2

1

2
)

1,a,-~- a
Thus f e A . Repeating the fina l calculation in (2.15) and (2.16),

we have

If 1 ~ K I g I 1- l,ct,~ -cx -

A A0
so the map g -* f is con tinuous , and Proposition 2.12 applies. 0

a in 2-l- cc ,l-4-~-a mLet K (D ; i R  ) ,  K ( D ; J R  ) ,  etc., be the respective subsets of
24-ct , l+~ - cx

X ct ( I ; ] R in ) ,  ~ 
2 (Q T ;]R m ) ,  etc . such that (u(s) ,s) € V for a l l  S ~ I

or (u (s,t),s,t) £ p for a ll (s ,t) e 
~T’ 

whichever condition being

appropriate . Propositions 2.9, 2.12, and 2.14 extend to give

2.17.  Proposition . The map (g,u) glu ] is continuous on

— 14— 
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_ _ _ _  
- “~~~~~~~~~~~~~~

2+cx , 1+1cx 2+a ,l+-~- ct
Act ( D ; l R f l ) X E a ( D ; J R m ) (or A 2 ( Ø J R fl ) X E  2 (D ;]Rin) ,  etc.) and is

continuously Frechet differentiable on A
l

~~~~
a ( D ; J R~~~ ) x 6

ct (p ;~~~ in
) (2!:

1,2+a,l4cx 2+cx , l4 ci
A (D;]R~ ) X K (D;R in), etc.). If ci ~ 0 and if the

hypothesis of Proposition 2.14 are valid then the map (g,u ) g lu ) is

l,2’s-a,1+1cx 2+cx,1+1cx
continuo us)y Frechet differentiable on A

0 
2 (p ;JR fl ) x 2 ( D ; J Rin)

2.18. Rema rk. Natural conditions for continuity and differentiabilit y

on the spaces Cci are d i f f i cu l t to obtain , as the following example

ill ustrates. Let

ag(u ,s) = min{ IsI l u l )

Then the map u -‘ g [u) takes Cct (O ,l ;]R ) into itself , but is discontinuous.

In fac t g LO ] = 0 but , for every constan t fun ct ion C + 0 , I g r e l I > 1.

— 15—

_ _ _ _ _  _ _  ~~~~~~ -- ‘-‘ -- - - - - - - - -— -~~~~~~~~~ -~~~- -  - - - -~~~~~~~~~~~



-

3.0. The Linearized Equation .

In this section we consider the linear initial-boundary value problem

(3.1) . P
~ tt 

- Rw~ 
— Sw = f

(3.2) - q ~ Range H ,

(3.3) Bw + Dw p

(3.4) w (.,0) ¶
~o~ 

w~~(.,O)

In equation (3.1), P ~ L ( X a (s 1, s 2
;] R N ) ; Xa (s 1, s2 ; J RN)) is given by

(3.5) Pw (s) = P0(s)~ w
(s)

where P 0 € X a ( s 15 s 2
; L ( ] R N ; JRN)) and P0

(s) is positive definite and

N a N
symmetric for each s; w h i l e  R and S L ( X  (s1

,s2
;JR ); X (s1 1 s2;JR ))

are given by

(3.6) Rw R -w + R w + R ~w- ~0 -ss -]  s — 2 -

(3.7) Sw = ~ ~~ + S ~~~~ + S .
~~~
,

- -0 -ss -1 5 -2

where 
~k’~ k 

~ X
cx ( s

1 , s 2 ; l (1R N ; JRN ) )  and R
0
(s) and se (s) are positive

definite for each s while Se
(s) is symmetric. In  co n d i t i o n  ( 3 . 2 ) ,

N
1 

N2 N N
= 

~

‘ e L ( I R  ~ JR JRN~~ JR ) .  We identify JRN~ JR with the

set of functions {s } JR1~, so that condition (3.2) is a restriction

on the boundary values of w analogous to condition (1.2) . Rank

H = N .a 

In equation (3.3), B, D E !~(X 1 (s15s 2;P
N ) ;  JR

N1 2) are g iven by

( 3 . 8 )  BW ( S cx) ~o~~~ci
1 Ws (S a ) 

~ ~~~~~~~ 
.w(s

~~
)

( 3 . 9 )  DW (Sa) = D0
(s)

~~
ws

(s
a) + D

i
(s
~~

) .w ( s
~~
) ,

where 
~~~~~~~ 9k~~~~

1 € L(JRN ; 
N 

Rank N0.

We consider I, q, p , and w1 as given functions with

-16-



~
‘ 

1
Nf e x  (Q~,,;a~)

2+ 1

q e x 2 
~~~~ x JR~ ; ~

N e ~N)
(3.10) - ci

N N
~~ ~ X 

N 

~ 2)

~0’ ~1 ~ 
x 

~~~~~~~~~

We seek w sat i s f y i n g  equations (3.1) to (3.4) with

(3.11) w c Y~~(Q0 )

2+a ,1.4cx Nwhere 
~O~

0T~ 
is the space of functions u e (OT;U

~ 
) such

2+ci , l+~-a Nthat £ X 
~
0T’~ 

with  norm

J u l a = u I + Iu
~ l 1- 

~
bo 

- 2+~~,l+~-ci ,ci - 2+a,1+~-a ,ci

In addition , we seek an estimate of the form

(3.12) wi 
~ 

< K (i f l 
~ 

+ i~ l ~ + 1p 1 1 +~ w0~ + lw 1 l- - 

~~~~~~ 2+~-~ ,o - 

~-ci ,j 2+a 2+a

In this section the letter K denotes a generic constant, whose value

need not be the same on each occurrence . We permit K to depend on cx ,

a, Is 2 - cl I ’ the functions 13, D, P, R , and S, and , when we specifically

admit the ‘pos s ib i l i t y, on the time T. In this section all Banach spaces

are complex .

3.13. Compatibility Conditions .

In order that w satisfy ing conditions (3.1) to (3.11) exist, the

data must satisfy the following compatibility conditions:

- q(0) c Range H ,

w
1 J 5 

— 
~~ (O) t Range H

(3.14)

+ Sw0 + f)(s0,0) c Range H0,

Bw 1 + Dw0 = p (O)

• -1 7—



We denote by F0 the set of all (f, 
~
j, ~,, w0, w 1

) si t i s~ y inq (‘~ ) L ~ , 1 1 —

t ion s  (3. 10) and (3. 14) . Then F0 is a Banach sj ur~- vi t t  h i ! ’  n i d i c j t & d

by the right hand side of inequalit y (3.12).

3.15. Lemma . Let (f , q, p, w0, 
~~~ 

F0 ~~~ g iv e n .  ~~~~~I’e i b t h

w c Y~ satisf yinq c o n d i t i o n s  ( 3 . 2 )  and (3.4), and t h e r  v x s t s a c o n s t ~tnt

K such that estimate ( 3 . 1 2 )  is v a l ic l .  I f  f’ f — Pw + Rw 4 sw a~~-________ _____

~~~~

_ — - - ~t_ t  _ t  _

p ’ = p — 13w — Dw theti (f’ , 0, ~~
‘ , 0, 0) ~ F0.

Thus WC need only consider data of the form (f, 0, ~~ , 0, 0).

Proof. Let

v1
(s ,t) = [Cs 2 

— s)q(s1,t) + Cs — s1)q(s2,t)],
’(s2 

—

—at
= c [w

0
(s) — v1 (s ,O))

v3 (s ,t) =t e
c i t[w 1 (s) 

— 
Ylt (s,O) — 

Y 2 t~~~~~~~
’ 0

~~~~
1 w I t ’ re  0 ’ o .

Then w = v + v2 + v is the desired function . It is clear that an- — 1 -
estimate of the form (3.12) holds and tha t I’ and ~~

‘ satisf y (3.10).

We observe that since I and p satisfy (3.14) we have f’ (s~1 5 0) = 0

and p ’ (s ,O) = 0, so that (3.14) is satisfied by (f’ , 0, p ’ , 0, 0). [1

3.16. Construction of w.

3.17. Theorem. Let (f ,q,p,w0,w1) c F be q i v e n .  Then  for e~,ch T -~

there exists ~ 
- 

~O~
0T~ 

sat.isfy inq e~ g~itions (3.1) to (3.1). T h er e

ex i s t s  a constant K , depending on T, such t h a t

(3.18) iw I a < K~ (f,q,p, w0
,w

1
) 

‘F- - - - -

Proof. The spaces Ya (OT) are clearly equivalent for T < ~‘ , thus

we conrider only ci = 0. By Lemma 3.15 , it is sufficient to consider data

of the form (f ,0,p,0,0). Let V = W
~~
(f,p) be the solution of the

parabolic system

—1 8—
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—

- Rv = I

e Ra nge H
(3.19) ci

B v = p ,

v ( s ,0) = 0

and let

(3.20) W(f ,p) (s ,t) = 1 Wt(f ,p) (s, ’r)dt

Equation (3.19) is parabolic because P
0 and P0 are positive definite

while P
0 

is symmetric. From the theory of parabolic systems

(LADY~ ENS KAYA & SOLONNIKOV , 1967), equation (3.19) has a unique solution in

2+c*. i4cr NC ) and there exists a cons tan t  K, such tha t

(3.21) Fyi 1 < K( lf 1 + I~~I 0)2+ct,1+~-a a,-~ cx

The constant K depends on a , s2 
- s1, T, H , B, the Holder norms of the

functions P
0 and R.K

, and on the minimum eigerivalues of and of

the symmetric part of If we approximate these functions by C~

func tions , and likewise approximate I and p, the solution to equation

2+~~, l+~- cx
(3.19) is C and , by (3.21), approximates v in C . Thus we

2+cx , l4a Nsee tha t v e X (Q T ;U ). From (3.20) and (3.21), we have

l I w I l 1 1 < K ,

N ~~~~~ N N2 2+ci ,l+~-aL (X 
~~~~~ 

~~ ({s
0
} x 1 

~ ) ;x 2

( 3 . 2 2 )
l i w l l  1 1 < K .

N 70 + 
N 1 N 2X X  ((s 0

} x ~ ~~

We observe that the solution of equations (3.1) to (3.4) may be

characterized as a fixed point of the transformation on

— 1 9—



(3.23) w • W(f ± Sw .p — Dw) W(f ,p) + WJw

where for w

N + 
N1 N

Jw = (Sw ,—Dw) c X 
~~T’~ 

X ((s } )< JR ~ 2)

To construct su ch a f i xed point , let w° ~ Y
0(OT) and define

= W ( f ,p )  ~ 1~~~
n — l  n = 1, 2 

A simple calculation gives

n-l
(3.24) w’l = ~ (WJ ) k W ( f P) + (WJ )~ w° .- k=0 - -
Let us show inductively that

(3.25) iI (wJ )nIi < !IW tII n II J II
flTfl/n!, n = 0,1,2,.. .

( 3 . 2 6 )  I I w tJ wJ )
~~II ~ IW tII~~iI J Ii °T” 1/(n~ l) , ~ = 1,2 

Inequ al i t y  (3.25) is t rue  when n = 0. Since I IV ~J II  < Ifti~I !iI J II , inequality

(3.26) for n = k + 1 follows from inequality ( 3 . 2 5 )  for n = k. Integrat-

ing inequality (3.26) for n = k + 1 gives inequality (3.25) for n k + 1.

Thus inequalities (3.25) and (3.26) are proven.

Then we may pass to the limi t in equation (3.24) as n -‘ to show

that n converges to

(3.27) 
k~0 

(WJ )kw (f ,p)

Inequality (3.25) shows that the sum converges absolute ly in 
~~~~~~ 

and

gives the estimate (3.18). Since w is the limit of w~ , and since the

transformation (3.23) is continuous on 
~~~~~~~ 

w is a fixed point of

the t ran sf orma t ion  ( 3 . 2 3 )  . Since the l im i t  is independent of- the choice

of w°, the solution is unique. U

From the proof of Theorem 3. 17 we have

3.28. Corollary . Let (f ,0,p, O ,0) € F0 be given and let W be d e f i n e d

by (3.19) and (3.20). Then the solution w of equations (3.1) to (3.4)

~~~~~~~v~~~~~~~~c9~~~tip (3.27).

— 2 0 —  
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3.29. Asymptotic Behavior of w.

In this  section we obtain an estimate on (w(~’ ,t) I2+a as t -.- ~~~~.

We begin by exam in ing  v (WJ)’~W(f ,p) . Since v is the solution of a

linear evolut ion equa tion , v can grow at most exponentially in t. By

(3.25), V ~ S H~ lder continuous. Thus we may construct v by Laplace

transforms . Doing so, we obtain

t a+i= - -
(3.30) v (- ,t )  = 

~
-
~

-
~
- j  L_~= e ( t_ T

~~~(w( C)J) flw ( C ) ( f ( . ,T ) ,p ( r ) ) d CdT

where w = W(~~) (f ,p) is the solution of

~R) w = f ,

(3.31) 

~~~cx 
e Range H

=

and we 
N~ 

as arx element of

X0(s1,s2;a~ 
) x ~ ~ ). Then W is an operator valued analytic func-

tion of t~.

We observe that W(C) (f, O)  = P ( ç I  - P ’R) 1 , where the inverse is

taken among the functions satisfying homogeneous boundary data in equation

(3.31). If v is the solution of equation (3.19) with homogeneous f

and p but with v(s,0) = v0(s) then the Schauder estimates for parabolic

systems (LA DYZENS KA YA & SOLONNIKOV , 1967) give

I v(.l t)i~ +~ 
K iv 0i t

2 
, 

~ 
=

These inequalities and that C is dense in X are known to imply

(FRIEDMAN , 1969; PAZY , 1974) that for some positive constants , a, and b

ari d for

c e .1 {
~ c Q : Re(t) > a — b JInx (~~) 

) )

I (CI — P ’R) 1f l . +~ 
< K I t~ 

2 

~~~ 
j = 0 , 2

- 
. 

—2 1—



Thus

(3.32) lw c) ~~9) < K~~~C I  

2 fl 0, C e J , j = 0,2 -

We shall obtain slightly weaker estimate s for non—zero p.
N N N 

-

Choose T € L ( ~ • ~ ~ ) such that ‘ T = I, which we

may do because is of full rank . Let ~ be a smooth function on

JR ]fl~ satisfying

1
1 2

•( x ,y )  = 1 fo r x <

1
2ø (x ,y) = 0 for x > y , 

-

• i~~(’,~ ) i~ +~ 
< Ky~~

”2 
, j = 0,1,2

Let

- 2
(W 1

(~~)p)  (s) 
o 1  

- s , i C i ) I S  - S + (_1) c i C i
2
(s - s ) 2)T ‘ P0/C -

Observe tha t  for  s u f f i c i e n t ly la r ge i d ,  CBW 1 (C)p = p and that

(3 33) IW 1(C)~~I~ +0 < K~ C~ 
2 

p 1  ~ = 0,2jCi > ‘
~“~~ 2 

— s
i
)2 .

Then

(3.34) • w (~) (f,p) = W(d) Cf — (d 2P — CR)W1
(r,)p) 4- W

1 (c)p

T a k i n g  a la rger  if necessary,  we have from ( 3 . 3 2 ) ,  (3.33), and (3.34)

(3.35) I w C  ~~~~~~~~ l~ +~ 
< K~~~ 

2 (I f I + i&) , C c J , j = 0, 2

It follows that

(3.36) I (W (C)J)nW(C) ~~~~ < K
~~~~~

1 ’ I C I  
2 c l~ I 0 + Ip I )

Then we may shift the path of integration with respect to C in (3.30)

to the path ~J. Let us further shift the path of integration in (3.30)

• —22—
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I

1
to a contour I agreeing with ~J for large C i  but  such t ha t  I d ~~ 

> K

on I , where K is tke constant in inequality (3.36), Then if w is

given by equation (3.27) we have

t
(3.37) w( ,t) 

~~
-j- f 1 ~ e(t 1)C (w(C)J)kw (C) (f(’ ,T),p(’r))d ddl

- 0 I k=0 - -
the sum converging absol utely on I .

Let ~z = Z(C) (f ,p) be the solution of

2 -
(C P — CR — S)w f

(3.38) 
~ i 5 € Range H

(CB + D)~’ = p

Then 2 is an operator valued analytic function of C. One can show ,

in a fashion analogous to showing that (I — A) 1 
= ~ Ak for jA~j 1 ,

k 0

tha t  for  C ~ J and 1d1
2 

> K

(3.39) ~ (W (~~)J)
kW ( )  = Z (C)

k=0

Combining our results , we have

3.40. Lemma. Let (f ,0 , p, 0, 0)  c F be given. Then the solution of

equations (3.1) to (3.4) ~~~~~~~~~~~~~

(3.41) w(’,t) ~~ f
t f e

( t 1
~~~ Z ( d )  (f(’ ,~~),n(1))dCdT- i O I - -

where 2 is defined b y e~ u a t ior .-; (3.38). There exists a c o n s t an t  K

such that for C .1 and i d i  > K

( 3 . 4 2 )  J 2 ( C ) ( f , p ) l . 4-0 < K I d  2 (1 f 1 0 + p 1 ) ,  j = 0,2

To obtain (3.41) we estima te (3.39) by (3.36) and sum the geometric

series.

3 . 4 3 .  Lemma . Suppose Z is analytic for Re(C) > —a
n
. Let a < a

~ 
and

(f ,q,p,w01w1) c F0 be given and let w be the solution of equations (3.1)

- —2 3--



• -w

to (3.4). Then  therr exists a con s tan t  K such that fot-~~~I 1 t > 0

at  
2+0 x l 

~~~~~~~~~ F0(3.44)
Ie
0twt •~ t i 2+a <

Proof. By Lemm a 3.15 , it is sufficient to consider data of the form
( f , 0 , p , 0 , O )  F . Let I be the contour in (3.41), and deform I into a

Contour I ’ = I~ U where ICI < K on I~ and < 

~~~~~ 
sup Re(C)< — 0

while H > K and Re ( C )  = a — b Im (C) on I~~. Let 
~l 

: JR~~-~ [0 ,1]

be a smooth decreasing function such t h a t  Q 1(t )  = 1 on [0, 2) and

= 0 on [3 ,= ). Let 
~ 2 

= — 

~~~ 
For t > 0 let T be the

f i r s t  i nt e ger  g r e a ter  than t , then by (3.41)

t
w ( ’ , t )  = 

2 1 1 0
(t 1 )

2 ( ~~~ [0
1

(T - I) + ~2
(T -

— •
~
1 0 I l  — —

w
1 (’ ,t ,T) 1 w

2 (’ ,t,T)

The f u n c t ion w
1 is the  solution of equations (3.1) to (3.4) with

da ta  e s t i r . i t r ~cJ by f and  p and ~;upp ~~rted  in ET — 3 , T1 ; therefore

inequalitira (3.44) are valid for w
1 hy Theorem 3.17.

By (3.41)

~ 2~~~,t ,T) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We have

e° ~~ (‘ ,t ,T) 
2 +& 

1 ~~~~ 
~ 

le ~~~ (~~~ +c i)  

~ (C) e
0T ( f (  - , ~) ,p (T)) 2~~~dCdT

( 3 4 5 )  1

< 
~ l ~~~~~~~~~~~~ ‘F

U s i n g  (3.42), for t > 1 we have

—24—



~~~~~
-

~
-

1e
0t

y22
(. ,t,T) 

~2+a 
< 

1
t-l 

~ 
Ie

(t_T) (C+0 )
~~ (d )e 0T 

(f( ) , p ( t ) )  I 2~0dddT

t—1 — -
~~

- (t—r ) (a—a
(3.46) < K~ (f,O ,p,0,O) i F f (t — i)  e 1 di

0 0
K I  (f,0,p,0,0) Fa

Combining (3.45), (3.46), and our estimate on w1, we have the desired

estimate on w(.,t) in (3.44). The estimate on wt
(.,t) is obtained

in the same way . 0

3.47. Theorem. Let o
~ 

be as in Lemma 3.43 , and let a < a
~~
. 

~~~~~~~

e F be given and let w be the solution to equations

(3 .1)  to ( 3 . 4 ) .  Then there ex is t s  a constant  K such tha t

I w I ~~~~~~) < K i (f ,p~q, w
0
,w1)!~

Proof. One obtains an equivalent norm on the Holder spaces if one

restricts oneself to It 1 — t
2

i < 1 in the H6lder quotients. Thus it

is s u f f i c i e n t  to e s t ima te  w on each interval n < t ~ n + 2 . If we

let w ’(s,t) w(s,t + n) and make similar definitions for V, q ’, and

• 
• 

p ’, then , by Theorem 3.17 ,

(3.48) I I  <

Multiply ing (3.48) by ~~~ and using Lemma 3.43, we obtain the desired

estimate. U

3.49. Singularities of Z.

Contrary to the experience with first order evolution equations , the

‘~resoivent” Z is no t gen erally meromorphic in ~~~. But we do have:

3.50 . Theorem . Let

= inffo e B: det [CR0(s) + S
0
(s)) � 0 for

(3.51)
S

1 
< S ( s2 and Re (C) > a)

Then 00 
> 0, and Z is meromorphic in C for Re (d) > _00. If

— 2 5 —



Re (t,) > ~~~ and 2 has a pole at C
0 then there exists a finite dimen-

sional, non-trivial vector space of functions w such that

(C~ P 
— C0R 

— S)w = 0

(3.52) wj~ e Range H

(C OB + D)w 0

Thus we may verif y the hypothesis of Theorem 3.47 by solving the eigen—

value problem (3.52).

!roof. Since the matrices R0(s) and S0(s) are positive definite

wh i l e  S0(s) is symmetric , the determinant in (3.51) is non—zero for

Re (C) > 0. Since these matrices are continuous in s, we have 0
0 

> 0.

The solution to (3.38) is given by -

- 

S
2

(3.53) w (s) = 2(C) (f,p) (s) = f • (s, ~,C) ‘f (C)dC + 
~2 

~~~~~, C) ‘p

for some Green~ s functions and which are meromorphic in C when—

ever the determinant in (3.51) does not vanish , thus for Re(C) —a n
.

We apply Morera ’s theorem to show tha t  2 is meromorphic : If (~ 
—

is analytic in C in a simply connected neighborhood of then we

integrate (C - C 0 ) ’~z ( C )  (f ,~~) about a closed contour and use (3.53) to

show that the integral vanishes.

Now suppose that Z has a pole at C
0, and that

Il~~C lI = 0(IC - C i~~) (
~ C )

L (X x~ ~~ ;X )

Then there exist f and p such that for small c > 0

F 

IC C0{ c  
(C — C0

)n l
Z (C) (f ,p)dr, ~ 0

Then , since C
2P - CR - S c L (X 2

~~~;X
0
) is a smooth function of C,

— 2 6 —
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(C~P 
— C0R 

— S)w 2iiT 
— 

I 
— 

(d~
P — C0

R — S)(C —
I C  d0 I— c

= -
~

-
~
-j- 

— 
I 

— 
t (~

2P — CR — S) (C — C0
)’~~ + 0(IC — C0 I ’~)

I C  c0 I~~
Z ( ~~~~) ( f , p ) d C

= 0(i) (~ 0)

Since c may be arbitrarily small , (C~
P — C0R 

— S)w = 0. Similarl y,

(c 0B + D)w 0. Thus equations (3.52) have non—trivial s olu t i o n s .  Bu t

solutions to (3.52) coincide with solutions to the eiqenvalue problem

( A P  — C0
R — S)w = 0 w i t h  f i x e d  at A = C~~; therefore the solutions

to (3.52) are finite d i m e n s i o n a l .  U

— 2 7—



4 . 0. The N o n l i n ear  E~j ua t ion.

Le t u * , ~~~* be a s o l u t i o n  t i the  e q u i l i b r i u m  e q u a t i o n s  ( 1 . 1 4 )  to

( 1 . 1 6 ) . W i t h o u t  loss of g e n e r a l i t y, wi- t ake  v~ = 0. Let

U = (U — u~~, v — v *)  (w , v ) .  Let ~ = (f  — f* ,q — q * ,p  — p * ,~~~ — u * , u 1)

and w r i te  — ~~~ 
~ l ~ l Then we m i y  wr i te  e q u a t i o n s  ( 1.1 )  to

( 1 . 4 )  in the lo i n F ( U , t .) = 0 w i t h  F = (F 0 , F J , F 2 , F 3, F 4 ) where

F0 (U , ’ )  = A [u j’~ + a t ul — ~ -m [u ] + —

F 1 (U,A) = —

( 4 . )) 
~2 

(U, t) = 

~~~ 
— p Eu] ) ‘~~~

—
~~ Iv]

= w ( ~~, O) — w
0

F 4 (U .~~ ) w~~(. ,O) —

To ~i~~p 1y t h e  ~~ l Ls of ~~-c~ ~~~ie- 2 and 3 , we con s ider

— u * y~~~ ) )

(4.2) 124.
y c x 2 ({s ) JR+ . jpN~ JRN)

It  u~ C t h e n  t h e i  c cx i ci an epen ect P of values of u ,v ,

d e r iv ~~ti vec  i u :q’~ ’~ ’ i r  in g  i n  ( 4 . 1 ) ,  s , and t , existing in the

app r opr i a t e  pie • ct of JR and Q ,  cont  ci  iii  ng the Q a x i s , a n d su ch

tha t  F ( U , 0) is defined wh t-c th e  qrcp h of u , v , and the derivatives

of u is i n  p. (To ic precise , we should l ist  seven d i s t i n c t  sets  D ,

we prefer Ic be sl i g h t l y ambi gu o u s . )  M a k i n g  p s m a l l e r  i f  necessary  we

may sat icfy t ic staish .ged h y~ c t hi-~~i s of P r o p o s i t i o n  2 . 1 4 .  We t ake  Ii

i n the  f ol l o w i  i g  p r o du ~-t ~;p t 1 e :

—2 8— 



1

f — A 0 ( P ; L ~ )

2 , 2+~ ci
q - q* ~ A0 

2 (~~~JRN .? BN)
(4.3) 1

1,2 0 N1 N2p — p* A ( D ;] R  ~ iR

C X (s 1,s2
;]R )

We denote by 1’ the set of A sa t i s f yi ng (4.3) and the following compat-

ibility condition:

2+~ c~( 4 . 4 )  There e x i s t  U c x 2 such t ha t  F ( U , A )  (s , 0 )  = 0.

We require the following regularity conditions on the remaining func-

tions in equa t ion  (1 .  1 ):

A c A ’’°(D; L (IRN ; JRN ))

Na C A (D ; JR

(4.5) in A 2’ 1 ~ (P; IRN )

Nf l e A  (z ;IR ).

Let I) be the Banach spa -e of i n i c t i e n s  
~~~~~~~~~~~~~ 

satisfying

conditions (3.10) with ~~ rep l a ced by

To state Le mma 4.6 we i n t r o d - i ( y t i c  following n o t at i o n :  For any func-

tion f of (u , u , u ,  , t- ) or iub ;i-t. of th es e  and fo r  any f u n c t i o n s

u, w oj (s , t )  we let

• ~~~1
Iu 1 .I w] = 

~~~~
IU] ’ws ~ ~~ Iu]~~w + 1H u1~~w +

4 . 6 .  Lemma . Let 13 ,1’ and D be as dhove and let the r egu la r it  c o n d i t i o n s

(4.5) hold: Then F ~~~~~~~~~~ Y~~(O) 
x X

2
~~~(Q ; JRN 4 ~~~ P into D and

is continuo ’s1~~ differentiah1e jn U. The_derivative at U = 0, A = 0 is

give n by

— 2 9 —



1~F 1
(w , v) = Pw — Rw

t 
— Sw

[j~(o ,o)] (w ,v) = w i~ 
-

- a
2q*

(4.7) [~~~ (o ,o)](w,v) = B~ + Dw + (m[u *) - p*[u*]).~~~~[O).v

1~F ]
~
_
~~~(o i 0)J (ws v) = w (•,0)

1
= w (~~,0) ,

where P, R, S, B, and D have the form given in (3.5) to (3.9) . We have

— 

~~~~~t 

— SW = ~~~~ 
~~~~~~~~ 

— ~~~~~ 
__f __~[~*] . [w] + _L

~~~~~[ji * ] .  Iw) — ~f~~Iu *). [
~~]

(4 . 8 )  Bwt + Dv = ~~~~~~~~~~~~~~~~~~~~~~

In p a r t i c u l a r,

= 1_~I~~*i

-S
t

( 4 . 9 )  
= -~~~Iu~ ]

~
B = 

_
~
_
~~_ Iu *] 1. —~-[0 ]_o au - s J  ~~~~_s
t c:y -

Proof. We write out the term in (4.1) using the chainrule. Under 

our hypothes is , Proposition 2.17 applies and justifies all forma l computa-

tions. The derivatives of ~ are multiplied by 
~~~~~~~ 

wh ich is zero wh en

u = u~~. By (1.9), a is quadratic ~ ~~~~
‘ so that its derivatives drop

—3 0—
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out when u = u~ . The terms resulting from expanding jj are regrouped

to give (4.8). 0

Let D
0 

be the subspace of D satisf ying the following c o m p a t i b i l i ty

cond it ion : 
i2+~ ci

(4 .10)  If A E D
0 

then there exists U c y~ x x such that

[~-~~ 0,0)]Us0,0 = A(s0,0) -

Whether A e D is an element of D
0 is act ual ly determined by the values

of the derivatives of the components of ~ at (s ,0) . Since D0 may

be characterized as the kernal of a bounded linear operator on D, D0

is a Banach space.

4.11. Lemma . There exists a function (A ,A ) C D x p ~ G ( A , A )  c

continuously differentiable in D, such that

( 1) G ( 0 ,A )  = 0 for a l l  A e P

(ii) -
~

-
~~- (0 ,0) is the identity on D

(i ii )  If A = F ( U ,A )  for some U then G(A ,A ) e

Proof. Given (A ,A ) ~ D ~ P , we cons t ruc t  U ( A , A )  such t ha t  i f

A = F(U ,A ) for some U then A — F(U(A ,A )A) (s ,O) = 0. Let
-l N N

H c L (]p~
4 a IRN ; JR 1~~ ~ 

2) be a left inverse to H. Let 0 :

be a smooth function , 0(t) = 1 for t < and 0 ( t )  = 0 f or t > 1.

Using the definitions of F0, F3, and F4, we solve the equa t ion

F ( U ,A )  = A fo r  
~c’ ~~~~~

‘ 
~~2

’ the initial value and first two initial

derivatives of w. We then take

w(’,t) = 0(t) (w
0 + tw1 + ~

.t 2w2
)(.,t)

—1v = H  .i ,q- - -s

U(A , A)  = (w , v)

If F ( U ,A ) = A the initial values and first two initial derivatives of

U and U ( t~,A ) agree; thus A — F(U(A ,A ) ,A ) (s ,0) = 0. By Proposition 2.17,

— 31—
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U is a continuousl y diffe rentiable function of A. Note that U (0,0) = 0.

Let

c
0
(A ,A ) A — r (u(A ,A ),A ) + [~~~(0 ,0)]t3 (A .A) -

If A = F(U,A) for some U then G0
(~~,A ) e D0. In fact , if

(A -
~ F ( U , J~) ) ( s  , 0)  = 0 for some U then G0

(A ,A ) e D
0
. By

d e f i n i t i o n  ~~t i , (4.4), G0
(0,A) ~ D0. Thus we may take

G (A, A) = G0(A, A) — G 0 ( 0 , A )

C o n d i t i on s (1) and (ii) hold by construction , G is continuously differ—

entiahie in A by Lc-iuma 4.6 and the composition of differentiable func-

tions , and condition (iii) is readily verified. 0

4.12. ‘~~h ( -o r~ -lfl . Let Z be the operator defined by (3.38) and suppose 2

~~~~~~~~~~ ~~- (C ) > 
~~~~~~~~ 

Then if 0 < o < 0
0 

there exists a ne her—

hood 0 of 0 in 1’ such tha t the eguat ion  F ( U , A )  = 0 has a solution

U fo r  a t l  A e 0 , and U depends co nt i n u o usj y 2~ A.

Thus i t  U = (w , v) the n (u , v )  = (u* + w ,v) is a solution to

e q u a t i o n s  (1.1) to (1.4) with data related to the stationary data by (4.3).

All derivativ es occurring in the differential equations are Bolder

continuous and t h e  solution decays to u~ at an exponential rate c Ot .

Proof. ~:c~ apply the implicit function theorem to the equation

( 4 . 1 3 )  G ( F ( U , A ) , t )  = 0

where C is the function g iven in Lemma 4.11. By Lemmas 4.6 and 4.11 , the

f u n c t i o n  i n  e q u a t i o n  ( 4 . 1 4 )  is c o n t i n u o u s l y  d i f f er e n t i a bl e  i n  U and  maps

x J ~ i n to  D0 . 5y pa r t  C i )  of Lemma 4.11 , equation (4.14) is

equivalent to the equation F(U , A)  = 0. By part (iii ) of I a -mc a 4 .11, we

need on ly show tha t  .
~4~(0 , 0) has a bounded inve r se .  I f

( 4 . 1 4 )  {~~(o ,o)J (w , v) = A

then = ~~~~~~~~~~~~~ where H~~~ is as in Lemm a 4.11. We eliminate v from 

~~~~~~~~
- -

~~~~~~~~~~~~~
—- - -----

~~~
•
~~~~~



equation (4.15) , obtaining equations (3.1) to (3.4) with

— l(4.15) Dv = Dv 4 (rn[u *) p*[u *fl .~~~~I0].H ‘wj~

We observe that the spaces D
0 and F are equal. By conditions (1.6),

(1.7), (1.8) a nd by ( 4 . 9 ) ,  the  cond i t i ons  on 
~~~~

‘ 
and in Section 3

are met. Then equation (4.15) has a solution and estimate (3.12) holds.

But V~ 
~ 

~~~~~~ . Therefore ~!~(0,0) has a bounded inverse .
- 2+~~- c i  

- 
~~~
. U

The Continuous dependence of U on A is part of the impl ic i t  f u n c t i o n

theorem . U

4.16. Theorem . Let the functions A, a, in, n , f, q, p, u~~, ~~~ ~~
the regularity s cified in (4.3) and (4.5), and suppose that u €

2+~~ a
and V C X 2 (0 ,T) a re a no]ution of equations (1.1) to (1.4). Then U

2+~ - ci

and v are un i~j~~~~in Y0 and x 2

2+~~- a

Proof. Let u ’ Y (O T) and v ’ C x 2 (0,T) be solutions . We

shall show that , for some T’ 0, U = u ’ and y = v ’ on 0 < t < T ’ .

The set of P’ h a v i n g  t h i s  property is then none—empty and , by repitition

of the argument , open, but th e set is c l e a r l y  closed i n  (0 ,T] , thus is

the entire interval.

We may lineari ;~c’ equations ( 1 . 1 )  to (1.4) about the so lu t ion  (u , v)

and apply the impl icit function theorem to show that if (u ’ ,v ’) is another

2+~~- ~

solution in Y0 (Q~~1 ) ~ c 2 (0 ,T ’ )  then Ju — u ’ j  
~ 

+ Iv — V ’~~ 1 > K(T’).- - - - 2#~~-c i

(For f i n i t e  T our argument does not depend on the constant coefficients

in equations (3.1) or (3.4).) We may arrange t hat  K is a non—decreasing

function of T’: Recall that in the proof of the implicit function theorem

(D IEUDONNE , 1960) one examines the f u n c t i o n  (~~~(0,0)) 
1
(~-~(o,o)U — F(U,A))

— 3 3 —



If K is so small that when sup (IIUII ,IIA II } < K then

(4.17) ~
f
~~~~~ (0 ,0 ) U  — F(U ,A )~ < 

~t~i~~
(o,o)) ~ir

1
and if A is further restricted so that (~-~ (0 ,0)) F(0,A) < ~-K then this

function is a contraction taking the ball of radius K into itself;

solu tions of F ( U , A) = 0 for given A exist in this ball and are unique.

In our application , for fixed K the left hand of inequality (4.17) is a

non-decreasing function of T’ while the right hand side is a non—increasing

function . Thus K may be chosen a non-decreasing function of T ’ .

Since u and u ’ agree when t = 0, suplu — u ’I < 2T~
ci . Using- - 0T’ 

- -
Proposition 2.1 , one then shows that Jim lu  - u ’I 1 = 0. Treating- -

C (0 , T ’ )

the derivatives in the same way, lim Iu — u ’ 
1 0. Then , taking- - 

~czI~ .e
( %

T ’ small enough , we may conclude that u =  u ’ on 0T’~ 
Likewise, v =

on [0,T’). 0
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5.0. Conservative Problems .

In this section we suppose that the stationary problem (1.10) to (1.12)

is conservative as de f i ned by equations (1.13) to (1.15). In this case we

shall show that the eigenfunction criterion for stability developed in

Theorems 4.13 and 3.49 is equivalent to the second variation test for

stability . Thus the stability or instability of u~ is determined by t h e

elastic part of the linearized equation , no knowledge of the dissipative

mechanism beyond the validity of hypothesis (1.7) and (5. 2), below , is needed.

We remark that only the equilibrium problem need be conservative ; our results

hold under small non-conservative perturbations .

Let E ( u ,v) be the energy defined by equation (1.16). We consider

2+ N1 N2E as a functional or~ X x JR ‘B JR . By Proposition 2.17 , if the

regularity assumptions (4.3) and (4.5) hold then E is twice continuously

Frechet differentiable. Let i -* (u(-r), v(-t )) be a pa t h on wh i ch the

boundary cond i t i on  (1.11) is s a t i s f i e d  and such tha t  u ( 0 )  = u~~, v(0) =

Then , us ing  equat ions  ( 1 . 1 0) ,  ( 1 .12)  , (1 .13)  to ( 1 . 1 5 )  , (4.8) and (4. 15) ,

we have

2 ~~2

(5.1) ~~~~~ El 0 
= J ( E l u ) . U 1d s +  ( f l u ) . V

dr 
~1 

s1 T=O

(<u 1 ,Bu ) + (u 1,Du~~ ~~~~

Being the value of a continuous second derivative , the quadratic form in

(5 .1)  is symmetric.

We require

(5.2) (w ,Rw) + (w ,Sw) > 0 for all w # 0 such that wf c Range H ,
Sci

where the quadratic form in (5.2) is defined by analogy with (5.1). Condi-

tions ensuring hypothesis (5.2) are given in BROWN E ( 1 9 7 6 ) .  E s s e n t i a l l y ,

(5.2) is valid for bodies in which every non-rigid motion suffers internal
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~~~~~

t r i. t t • ’ n  i f  th e ’ pu~ ; i t  ~or i  l~~~~a~~~u y  cozti jtjoj i~ (1.11 ) do not admi t

a d e t o r m i t  ion  ci h a v i n q  t he  i n te r p r e t at i o n  of a r i g i d  m o t i o n .

~:?~ ~~~~~~~~~~~~~~~~~~ ~~~~ *

( ‘ . 4 )  (w , hc~
) 4 ~~~~~~ > 0 f o r  a l l  w 0 such _ t h a t  w~ ~ R an g e  H

j i o l  t h i t  ‘~ a i c u i s  ( 5 . 2 )  h o l d s .  The n Z is a n a l y t i c  f o r  Re (~~) > 0.

~. rfla ’~ ~~ in Theorem 3 . 4 7  t o  be pos i t i ve, and there  e x i s t s

a u r oh I c  h ‘ih e o r e m  4.12 holds.

f. Y~’ ‘~ic~ c i  cm 3. 50 , Z is meromorphic for Re (~~) > 0.  Suppose

Z b~~s a pc~ c~ a t  ‘l’hen by Theorem 3. 50, there exists a non—trivial w

s~c t  ~ sf y i i ~~~ a 0 a IL 52). The f u n ct i o n  w defined by

~0t -
( 5 . 5 )  w (c, t) = P c ( e  ) w ( s )

solves

- Rw~ - Sw = 0,

(5.6) R a n g e  H

+ D~ 0

T~ek i ncj t h~ i nnor p r o J a ct  e~ the f i i s t  and last equations in ( 5 . 6 )  with

and us i sq hat I a a S + D are s: mc I i i  c , we obtain

~~~ 
c c . ,~~~, PW~~~) ~ < w , S w >  ~~~~~~~~~~~ + t,R~ t

) + t,B~ t
) = 0

Then , by hy~ I a i  s (5.2)

( 5 . 1) ~ ~~~~
- f (w~~,Pw~~> (w ,Sw) + (w ,Dw)] < 0 for

Bu t  (5.4), (5.5), aiid (5.7) are contradictory unless Re(~ 0
) < 0 or = 0.

But  i t  0 I I  (5. ) can not  h old . 1]

We f i n  i c h  w i  h a con” or so t ‘fheorein 5 3 . -

5 . 8 .  T i ee~ om . Sc~ ’j oc;c u~ X2~ 
Cl is an i sul ited solution to the stationary

cqiia t io; c. (1.10) to (1.12), t h a t  the st~~tinnary j~~pb1cm is conservative,

t hat  h yp o th i e s i  ( 5 . 2 )  ho ld r , , and t h u  there e xists W C X2~~ such that

—36—
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(w ,Sw) + ( w , D w )  < 0

( 5 . 9 )  
C R a n g e  h i

Then u~ is n u t  s t a b l e  in X 2
~~~ .

P roof , We s h a l l  cons ider  only perturbations in the initial data .

Suppose , for the sake of contradiction , that for every open neighborhood

01 of (u *,0) in x there exists an open neighborhood 00

such that for all 
~~~~~~ 

c 0
o equations (1.1), (1.4), (1.11), and (1.12)

have a solution u , and for all t > 0 (u (t), u
~~
(t)) e o Taking the

inner product of equation (1.1) w i t h  u~ and i n t e g r a t i n g  by p a r t s  gives

E (u(’,t) + f ([m[u] - m(u(’ t ) J J ~~u

(5.10) 1

+ [n [u] _ n[u (.,t))].u
~~
)ds + [mI~i) 

_ m [u (.
~~
t)))’u

tJ s

(where m tu (’ , t )) rep res e n t s  m ( u ,u,0,0,s ) ) .  If  °l is suitably small

W~~ m a y  c s t i i ; ~~c t e  the  i t c t e c j r a t i d  in (5.10) by (u
t

e Ru
t
) + ~~~~~~~~ and

conclude I ica .c (5. 2~ that

(5.1)) E(ui(’ ,t) < 0 if / 0

Now 1~~t 0 < h < a, and for any t > 0 1~~t

= cI 2+~ ~ 
(u  ( . ~) u~ 

( , ) ) i > t

where ci ~ t e l r t a e n t s  t he  c lo s uic  o pe r a t o r  in  the topoloqy of C2~~~.

2+1 2+~ • -Since X inibeds c o m pac t l y ni X , s~~ is compact , and ~~ =
t>0

is non--etr; ’ty . If u is the solution of equations (1.1), (1.4), (1.11),

and (1.12) with initi al data (u 0.u~
) f~ then (G(. ,t),ut

(..,t)) c

for all t. Since E (u
0
) = lim E(u(’ ,t ) ) ,  E is constant on 11 . Then ,

t ’•*

by (5.11), is a station ary s o lu t i o n , and , taking 0~ smal l  enough ,

u~~. But if (5.9) holds  then we may choose so that , by 5.11 ,

E (~i
0
) < E (U

0
) < F(u~’)

then u~ ~ ~~~~~~ [1

- . 
. —3 7—
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